热工学创业(热学创始人)
小编为您收集和整理了热工学创业(热学创始人)的相关文章:热学创始人英国著名的科学家有以下几位。1、威廉•吉尔伯特威廉•吉尔伯特(1544—1603),英国物理学家,主要在电学和磁力学方面有很大贡献。主要著作《磁石论》是物理学史上第一部系统阐述磁学的科学专著...
热学创始人
英国著名的科学家有以下几位。
1、威廉•吉尔伯特
威廉•吉尔伯特(1544—1603),英国物理学家,主要在电学和磁力学方面有很大贡献。主要著作《磁石论》是物理学史上第一部系统阐述磁学的科学专著。
2、弗朗西斯•培根
弗朗西斯•培根(1561—1626),英国文艺复兴时期散文家、哲学家。英国唯物主义哲学家,实验科学的创始人,是近代归纳法的创始人,又是给科学研究程序进行逻辑组织化的先驱。主要著作有《新工具》、《论科学的增进》以及《学术的伟大复兴》等。
3、牛顿
艾萨克•牛顿(1643—1727),英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。
在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。
在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。
4、威廉•赫歇尔
威廉•赫歇尔(1738—1822),英国物理学家,恒星天文学的创始人,被誉为恒星天文学之父。
5、瓦特
瓦特(1736一1819)是英国著名的发明家,是工业革命时期的重要人物。1776年制造出第一台有实用价值的蒸汽机。以后又经过一系列重大改进,使之成为“万能的原动机”,在工业上得到广泛应用。
他开辟了人类利用能源新时代,使人类进入“蒸汽时代”。后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”(简称“瓦”,符号W)。
6、约翰•道尔顿
约翰•道尔顿(1766—1844),英国化学家,提出“原子论”和“道尔顿分压定律”,道尔顿患有色盲症,他研究并发表一篇关于色盲的论文。后人为了纪念他,又把色盲症叫做道尔顿症。主要著作《化学哲学的新体系》等。
7、迈克尔·法拉第
迈克尔·法拉第(1791—1867),英国物理学家、化学家。1831年,法拉第首次发现电磁感应现象,并进而得到产生交流电的方法。1831年法拉第发明了圆盘发电机,是人类创造出的第一个发电机。由于他在电磁学方面做出了伟大贡献,被称为“电学之父”和“交流电之父”。
8、达尔文
达尔文(1809—1882),英国生物学家,进化论的奠基人。他的代表著作是《物种起源》,他提出了生物进化论学说,从而摧毁了各种唯心的神造论和物种不变论。恩格斯将“进化论”列为19世纪自然科学的三大发现之一(其他两个是细胞学说、能量守恒转化定律),对人类有杰出的贡献。
9、焦耳
詹姆斯·普雷斯科特·焦耳(1818年—1889年),英国物理学家。由于焦耳在热学、热力学和电方面的贡献,皇家学会授予他最高荣誉的科普利奖章。
后人为了纪念他,把能量或功的单位命名为“焦耳”,简称“焦”;并用焦耳姓氏的第一个字母“J”来标记热量以及“功”的物理量。他发现了热和功之间的转换关系,并由此得到了能量守恒定律,最终发展出热力学第一定律。
10、詹姆斯·克拉克·麦克斯韦
詹姆斯·克拉克·麦克斯韦(1831—1879),英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人之一。建立麦克斯韦方程组。主要著作《论电和磁》《电磁学通论》。
11、欧内斯特•卢瑟福
欧内斯特卢瑟福(1871—1937),英国物理学家,近代原子核物理学之父,在放射性和原子结构等方面做出重要贡献。
12、亚历山大·弗莱明
亚历山大·弗莱明(1881—1955),英国细菌学家,生物化学家,微生物学家。于1923年发现溶菌酶,1928年首先发现了青霉素。青霉素的发现,使人类找到了一种具有强大杀菌作用的药物,结束了传染病几乎无法治疗的时代;从此出现了寻找抗菌素新药的高潮,人类进入了合成新药的新时代。
13、斯蒂芬·威廉·霍金
斯蒂芬·威廉·霍金(1942年—2023年),英国剑桥大学著名物理学家,现代最伟大的物理学家之一,20世纪享有国际盛誉的伟人之一。
证明了广义相对论的奇性定理和黑洞面积定理,提出了黑洞蒸发理论和无边界的霍金宇宙模型,在统一20世纪物理学的两大基础理论——爱因斯坦创立的相对论和普朗克创立的量子力学方面走出了重要一步。
热物理学家
1. 1月28日,中科院院士王绶琯因病辞世,享年98岁。王绶琯是中国天文学界的泰斗,我国射电天文的奠基人,曾任北京天文台台长。
2. 2月5日,工程院院士、中国石油大学(北京)教授沈忠厚在北京逝世,享年93岁。沈忠厚是我国著名的油气井工程技术专家、水射流专家、教育家,油气井工程学科奠基人。
3. 2月7日,中科院院士、高分子物理及物理化学家、南京大学教授程镕时在广州逝世,享年93岁。
4. 3月2日,中科院院士、数学家、中国工程物理研究院研究员周毓麟在北京去世,享年98岁。周毓麟是我国核武器设计中数学研究工作早期的主要组织者和开拓者之一,为我国核武器事业的发展作出了重大贡献。
5. 3月12日,中科院院士、中国科学院大学教授、国家天文台研究员周又元在北京逝世,享年82岁。
6. 3月22日,工程院院士、中国核潜艇第一任总设计师、核动力专家彭士禄在北京逝世,享年96岁。
7. 3月26日,中科院院士、中国科学院分子植物科学卓越创新中心研究员沈善炯在上海逝世,享年103岁。
8. 3月27日,中科院院士、中国科学院上海药物研究所研究员谢毓元在上海逝世,享年97岁。
9. 3月31日,工程院院士、经济学家及管理学家李京文在北京逝世,享年89岁。
10.4月28日,中科院院士、工程院院士、工程热物理学家与空间技术专家闵桂荣在北京逝世。
11. 5月6日,工程院院士、湿地生态学家刘兴土在长春逝世,享年85岁。
12. 5月14日,中科院院士、数学家王元在北京逝世,享年91岁。
13. 5月22日,工程院院士、“杂交水稻之父”袁隆平在长沙逝世,享年91岁。
14. 同一天,中科院院士、“中国肝胆外科之父”吴孟超去世,享年99岁。
15. 5月26日,工程院院士、著名的矿物加工专家、教育家陈清如在徐州逝世,享年95岁。
研究热学的物理学家
1、威廉•吉尔伯特
威廉•吉尔伯特(1544—1603),英国物理学家,主要在电学和磁力学方面有很大贡献。主要著作《磁石论》是物理学史上第一部系统阐述磁学的科学专著。
2、弗朗西斯•培根
弗朗西斯•培根(1561—1626),英国文艺复兴时期散文家、哲学家。英国唯物主义哲学家,实验科学的创始人,是近代归纳法的创始人,又是给科学研究程序进行逻辑组织化的先驱。主要著作有《新工具》、《论科学的增进》以及《学术的伟大复兴》等。
3、牛顿
艾萨克•牛顿(1643—1727),英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。
在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。
在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。
4、威廉•赫歇尔
威廉•赫歇尔(1738—1822),英国物理学家,恒星天文学的创始人,被誉为恒星天文学之父。
5、瓦特
瓦特(1736一1819)是英国著名的发明家,是工业革命时期的重要人物。1776年制造出第一台有实用价值的蒸汽机。以后又经过一系列重大改进,使之成为“万能的原动机”,在工业上得到广泛应用。
他开辟了人类利用能源新时代,使人类进入“蒸汽时代”。后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”(简称“瓦”,符号W)。
6、约翰•道尔顿
约翰•道尔顿(1766—1844),英国化学家,提出“原子论”和“道尔顿分压定律”,道尔顿患有色盲症,他研究并发表一篇关于色盲的论文。后人为了纪念他,又把色盲症叫做道尔顿症。主要著作《化学哲学的新体系》等。
7、迈克尔·法拉第
迈克尔·法拉第(1791—1867),英国物理学家、化学家。1831年,法拉第首次发现电磁感应现象,并进而得到产生交流电的方法。1831年法拉第发明了圆盘发电机,是人类创造出的第一个发电机。由于他在电磁学方面做出了伟大贡献,被称为“电学之父”和“交流电之父”。
8、达尔文
达尔文(1809—1882),英国生物学家,进化论的奠基人。他的代表著作是《物种起源》,他提出了生物进化论学说,从而摧毁了各种唯心的神造论和物种不变论。恩格斯将“进化论”列为19世纪自然科学的三大发现之一(其他两个是细胞学说、能量守恒转化定律),对人类有杰出的贡献。
9、焦耳
詹姆斯·普雷斯科特·焦耳(1818年—1889年),英国物理学家。由于焦耳在热学、热力学和电方面的贡献,皇家学会授予他最高荣誉的科普利奖章。
后人为了纪念他,把能量或功的单位命名为“焦耳”,简称“焦”;并用焦耳姓氏的第一个字母“J”来标记热量以及“功”的物理量。他发现了热和功之间的转换关系,并由此得到了能量守恒定律,最终发展出热力学第一定律。
10、詹姆斯·克拉克·麦克斯韦
詹姆斯·克拉克·麦克斯韦(1831—1879),英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人之一。建立麦克斯韦方程组。主要著作《论电和磁》《电磁学通论》。
11、欧内斯特•卢瑟福
欧内斯特卢瑟福(1871—1937),英国物理学家,近代原子核物理学之父,在放射性和原子结构等方面做出重要贡献。
12、亚历山大·弗莱明
亚历山大·弗莱明(1881—1955),英国细菌学家,生物化学家,微生物学家。于1923年发现溶菌酶,1928年首先发现了青霉素。青霉素的发现,使人类找到了一种具有强大杀菌作用的药物,结束了传染病几乎无法治疗的时代;从此出现了寻找抗菌素新药的高潮,人类进入了合成新药的新时代。
13、斯蒂芬·威廉·霍金
斯蒂芬·威廉·霍金(1942年—2023年),英国剑桥大学著名物理学家,现代最伟大的物理学家之一,20世纪享有国际盛誉的伟人之一。
证明了广义相对论的奇性定理和黑洞面积定理,提出了黑洞蒸发理论和无边界的霍金宇宙模型,在统一20世纪物理学的两大基础理论——爱因斯坦创立的相对论和普朗克创立的量子力学方面走出了重要一步。
热力学奠基人
倒是有不少学者在吹肥皂泡中发现了新天地。
热力学奠基人,英国物理学家开尔文勋爵,就是其中一位。
开尔文曾说:“如果你吹一个肥皂泡并进行观察,你可以对它进行一生的研究,并从中获得一个又一个物理定律。” 1887年,开尔文的侄女特意到乡下去看望这位老爵士。打开大门,眼前的画面是这位大学者在开心地吹着泡泡。
沉迷于肥皂泡的开尔文勋爵,曾提出过一个问题:如果将空间划分成很多个部分,保证接触面积最小,这些部分应该是什么形状?
这个问题被后世称为“开尔文问题”。
在二维平面中,开尔文问题已经被蜜蜂解答了。六角形的蜂巢结构,就是平面上效率最高的堆积方式。当然,蜜蜂们没有什么数学基础,它们这么筑巢,只是为了省点蜂蜡——这就是大自然的智慧!
至于三维空间的开尔文问题,老勋爵自己给出的答案是截角八面体,它由八个正六边形和六个正方形组成。
开尔文认为,用这种结构填充空间最为高效。这个答案显然受到了肥皂泡的启发
中国热学学家
电磁学
13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。
20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。
24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。
热学
29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K
热力学第三定律:热力学零度不可达到。
四、波动学
33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】
36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波
37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
39、1800年,英国物理学家赫歇耳发现红外线; 1801年,德国物理学家里特发现紫外线; 1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
光学
40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。
43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波; 1887年,赫兹证实了电磁波的存在,光是一种电磁波
44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式。
46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)
48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
相对论
49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);
50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;
53、激光——被誉为20世纪的“世纪之光”;
54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高分辨能力,质子显微镜的分辨本能更高。
原子物理
59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。
61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。
1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;
66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。 68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。
69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现正电子和人工放射性同位素。
71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。
来自网站
热学的发展
这是中国古代物理学发展的鼎盛时期。
宋代是我国封建专制主义大发展的时期,社会经济有显著进步,尤其在农业、手工业、冶金、武器制造、纺织业、陶瓷和国内外贸易方面较前都有所发展,行会制度盛行,城市经济繁荣,纸币及汇兑流行,这一切都促使科学技术有较大的提高。元代基本上仍维持宋代水平。
宋元时代,包含了丰富的物理学内容的五本巨著相继问世,它们是:沈括(公元1031—1095年)的《梦溪笔谈》、苏颂(公元1020—1101年)的《新仪象法要》、曾公亮(公元999—1078年)的《武经总要》、李诫(公元1035—1110年)的《营造法式》、赵友钦(宋末元初人)的《革象新书》。此外,《宋史》中的“天文志·仪象”、“律历志”、“仪卫志·政和大驾”、“舆服志·指南车、记里鼓车”等篇章,都是极有价值的科学著作。
宋元时代还有许多在当时属于世界一流的有关物理学方面的发明创造。
力学方面,《宋史·舆服志》详细记载了燕肃(公元960—1040年)等人制造的指南车、记里鼓车。指南车是一种指示方向的机械车;记里鼓车是能够记录车辆运行路程长短的机械车。根据史书留下的有关记载,不仅表明古代人娴熟地掌握了有关齿轮及其匹配法则的力学知识,而且今天还可以照书本复原制造。苏颂和韩公廉等人在1092年制造了一架大型的水运仪象台,即天文钟。它是现代钟表的祖先,也表明宋代人完全掌握了控制等速运动的技术方法。
李诫在《营造法式》中系统地总结了历代建筑经验,特别是提出了横梁的高与其宽之比的规律,比西方材料力学中同样的公式要早400年到600年。曾公亮在《武经总要》中记述了在两山之间引水过山,建造大型虹吸管的方法。宋僧怀丙(生卒年不详)在1066年利用类似现代起重浮艇的原理打捞沉落江中的万斤铁牛。此外,液体比重计和表面张力仪也是这一时代的发明。
热学方面,宋代人发明了火药、火柴,以及以火药为燃料而喷射推进的火箭,还发明了水套式省油灯。在煮水泡茶的生活实践中,人们还发现了水的递次沸腾现象。关于热胀冷缩的原理在实践中也得到了广泛应用。
光学方面,沈括的《梦溪笔谈》对日食、月食、雨虹的成因作了理论性总结。沈括还发现了阳燧的焦点,对凹面镜成像原理作了正确的叙述,并探讨了“透光镜”反射成像的原因和“红光验尸”的光学道理。赵友钦在《革象新书》中描述了一个大型的有关小孔成像的实验,并得出了正确的结论。
经典热力学的创始人
世界十大杰出物理学家
1、牛顿 (1643~1727)
牛顿
艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程……
2、爱因斯坦 (1879~1955)
爱因斯坦
阿尔伯特·爱因斯坦(1879.3.14-1955.4.18)犹太裔物理学家。他于1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理……
3、伽利略 (1564~1642)
伽利略
伽利略(Galileo Galilei,1564-02-15-1642-01-08)。意大利数学家、物理学家、天文学家,科学革命的先驱。伽利略发明了摆针和温度计,在科学上为人类作出过巨大贡献,是近代实验科学的奠基人之一。历史上他首先在科学实验的基础上融汇贯通了数学、物理学和天文学三门知识,扩大、加深……
4、马克斯·普朗克 (1858~1947)
马克斯·卡尔·恩斯特·路德维希·普朗克(德文:Max Karl Ernst Ludwig Planck,1858年4月23日—1947年10月4日,享年89岁),出生于德国荷尔施泰因,是德国著名的物理学家和量子力学的重要创始人。且和爱因斯坦并称为二十世纪最重要的两大物理学家。他因发现能量量子化而对物……
5、麦克斯韦 (1831~1879)
麦克斯韦
詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,1831〜1879),出生于苏格兰爱丁堡,英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人之一。1831年6月13日生于苏格兰爱丁堡,1879年11月5日卒于剑桥。1847年进入爱丁堡大学学习数学和物理,毕……
6、亨利·卡文迪 (1731~1810)
亨利·卡文迪许(Henry Cavendish,1731.10.10~1810.3.10)英国化学家、物理学家。公元1731年10月10日生于法国尼斯。1742—1748年他在伦敦附近的海克纳学校读书。1749—1753年期间在剑桥彼得豪斯学院求学。在伦敦定居后,卡文迪许在他父亲的实验室中当助手,做……
7、保罗·狄拉克 (1902~1984)
保罗·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,1902年8月8日-1984年10月20日),英国理论物理学家,量子力学的奠基者之一,并对量子电动力学早期的发展作出重要贡献。曾经主持剑桥大学的卢卡斯数学教授席位,并在佛罗里达州立大学度过他人生的最后十四个年头。他给出的……
8、迈克尔·法拉第 (1791~1867)
迈克尔·法拉第 (Michael Faraday,1791年9月22日~1867年8月25日)英国物理学家、化学家,也是著名的自学成才的科学家。生于萨里郡纽因顿一个贫苦铁匠家庭,仅上过小学。1831年,他作出了关于电力场的关键性突破,永远改变了人类文明。迈克尔·法拉第是英国著名化学家戴维的学生和助手……
9、玻尔 (1885~1962)
玻尔
尼尔斯·亨利克·戴维·玻尔(丹麦文原名:Niels Henrik David Bohr,1885年10月7日—1962年11月18日,享年77岁),丹麦物理学家,哥本哈根大学的硕士和博士,丹麦皇家科学院院士,曾获丹麦皇家科学文学院金质奖章,英国曼彻斯特大学和剑桥大学名誉博士学位,1922年获得诺贝尔……
10、理查德·费曼 (1918~1988)
理查德·菲利普斯·费曼(英文原名:Richard Phillips Feynman,1918年5月11日—1988年2月15日,享年69岁),美籍犹太裔物理学家,加州理工学院物理学教授,1965年诺贝尔物理奖得主 。理查德·费曼,高中毕业之后进入麻省理工学院学习,最初主修数学和电力工程,后转修物理……
热学是谁创立的
墨翟 早在二千多年前墨家便已有对光学(光沿直线前进,并讨论了平面镜、凹面镜、球面镜成像的一些情况,尤以说明光线通过针孔能形成倒像的理论为著)、数学(已科学地论述了圆的定义)、力学(提出了力和重量的关系)等自然科学的探讨,可惜的是,这一科学传统也因此书在古代未得到重视而没能结出硕果。但这一发现,震动了当今学术界,使近代人对墨家乃至诸子百家更为刮目相看。
沈括 沈括的科学成就是多方面的。他精研天文,所提倡的新历法,与今天的阳历相似。在物理学方面,他记录了指南针原理及多种制作法;发现地磁偏角的存在,比欧洲早了四百多年;又曾阐述凹面镜成像 的原理;还对共振等规律加以研究。在数学方面,他创立「隙积术」(二阶等差级数的求和法)、「会圆术」(已知圆的直径和弓形的高,求弓形的弦和弧长的方法)。在地质学方面,他对冲积平原形成、水的侵蚀作用等,都有研究,并首先提出石油的命名。医学方面,对于有效的药方,多有记录,并有多部医学著作。此外,他对当时科学发展和生产技术的情况,如毕升发明活字印刷术、金属冶炼的方法等,皆详为记录。
郭守敬 郭守敬和王恂、许衡等人,共同编制出我国古代最先进、施行最久的历法《授时历》。为了编历,他创制和改进了简仪、高表、候极仪、浑天象、仰仪、立运仪、景符、窥几等十几件天文仪器仪表;还在全国各地设立二十七个观测站,进行了大规模的“四海测量”,测出的北极出地高度平均误差只有0.35;新测二十八宿距度,平均误差还不到5';测定了黄赤交角新值,误差仅1'多;取回归年长度为365.2425日,与现今通行的公历值完全一致。
郭守敬编撰的天文历法著作有《推步》、《立成》、《历议拟稿》、《仪象法式》、《上中下三历注式》和《修历源流》等十四种,共105卷。
为纪念郭守敬的功绩,人们将月球背面的一环形山命名为“郭守敬环形山”,将小行星2012命名为“郭守敬小行星”。
郭守敬为修历而设计和监制的新仪器有:简仪、高表、候极仪、浑天象、玲珑仪、仰仪、立运仪、证理仪、景符、窥几、日月食仪以及星晷定时仪12种(史书记载称13种,有的研究者认为末一种或为星晷与定时仪两种)。
在大都(今北京),郭守敬通过三年半约二百次的晷影测量,定出至元十四年到十七年的冬至时刻。他又结合历史上的可靠资料加以归算,得出一回归年的长度为365.2425日。这个值同现今世界上通用的公历值一样。
中国古历自西汉刘歆作《三统历》以来,一直利用上元积年和日法进行计算。唐、宋时,曹士等试作改变。《授时历》则完全废除了上元积年,采用至元十七年的冬至时刻作为计算的出发点,以至元十八年为“元”,即开始之年。所用的数据,个位数以下一律以100为进位单位,即用百进位式的小数制,取消日法的分数表达式。
晚年,郭守敬致力于河工水利,兼任都水监。至元二十八至三十年,他提出并完成了自大都到通州的运河(即白浮渠和通惠河)工程。至元三十一年,郭守敬升任昭文馆大学士兼知太史院事。他主持河工工程期间,制成一些精良的计时器。
宋应星 我国古代物理知识大部分分散体现在各种技术过程的书籍中,《天工开物》中也是如此。如在提水工具(筒车、水滩、风车)、船舵、灌钢、泥型铸釜、失蜡铸造、排除煤矿瓦斯方法、盐井中的吸卤器(唧筒)、熔融、提取法等中都有许多力学、热学等物理知识。此外,在《论气》中,宋应星深刻阐述了发声原因及波,他还指出太阳也在不断变化,"以今日之日为昨日之日,刻舟求剑之义"(《谈天》)。
在物理学方面,新发现的佚著《论气·气声》篇是论述声学的杰出篇章。宋应星通过对各种音响的具体分析,研究了声音的发生和传播规律,并提出了声是气波的概念。
张衡 东汉中期浑天说的代表人物之一;他指出月球本身并不发光,月光其实是日光的反射;他还正确地解释了月食的成因,并且认识到宇宙的无限性和行星运动的快慢与距离地球远近的关系。
观测记录了两千五百颗恒星,创制了世界上第一架能比较准确地表演天象的漏水转浑天仪,第一架测试地震的仪器——候风地动仪,还制造出了指南车、自动记里鼓车、飞行数里的木鸟等等。
共著有科学、哲学和文学著作三十二篇,其中天文著作有《灵宪》和《灵宪图》等。 为了纪念张衡的功绩,人们将月球背面的一个环形山命名为“张衡环形山”,将小行星1802命名为“张衡星”
赵友钦(1279~1368)宋元天算物理学家。著有科学著作《革象新书》。这本书有一篇名为《小罅光景》的文章,罅就是小孔或狭缝。赵友钦做了一系列实验,研究小孔成像规律,以及由此引申的物理现象。
热学的代表人物
天工开物的作者是明代宋应星。
《天工开物》记载了明朝中叶以前中国古代的各项技术。《天工开物》初刊于1637年(明崇祯十年)。《天工开物》是世界上第一部关于农业和手工业生产的综合性著作,是中国古代一部综合性的科学技术著作,有人也称它是一部百科全书式的著作。外国学者称它为“中国17世纪的工艺百科全书”。
作者在书中强调人类要和自然相协调、人力要与自然力相配合。是中国科技史料中保留最为丰富的一部,它更多地着眼于手工业,反映了中国明代末年出现资本主义萌芽时期的生产状况。
《天工开物》全书详细叙述了各种农作物和手工业原料的种类、产地、生产技术和工艺装备,以及一些生产组织经验。
上卷记载了谷物豆麻的栽培和加工方法,蚕丝棉苎的纺织和染色技术,以及制盐、制糖工艺。
中卷内容包括砖瓦、陶瓷的制作,车船的建造,金属的铸锻,煤炭、石灰、硫黄、白矾的开采和烧制,以及榨油、造纸方法等。
下卷记述金属矿物的开采和冶炼,兵器的制造,颜料、酒曲的生产,以及珠玉的采集加工等。
《天工开物》中分散体现了中国古代物理知识,如在提水工具(筒车、水滩、风车)、船舵、灌钢、泥型铸釜、失蜡铸造、排除煤矿瓦斯方法、盐井中的吸卤器(唧筒)、熔融、提取法等中都有许多力学、热学等物理知识。在《五金》篇中,明确指出,锌是一种新金属,并且首次记载了它的冶炼方法。
《天工开物》中记录了农民培育水稻、大麦新品种的事例,研究了土壤、气候、栽培方法对作物品种变化的影响,又注意到不同品种蚕蛾杂交引起变异的情况,说明通过人为的努力,可以改变动植物的品种特性,得出了“土脉历时代而异,种性随水土而分”的科学见解。
热学的奠基人
薛定谔是一位著名的物理学家,他的全名是埃尔温•薛定谔。薛定谔是量子力学奠基人之一,发展了分子生物学。因为发展了原子理论,和狄拉克(Paul Dirac)共同获得1933年诺贝尔物理学奖。
他在量子力学领域的贡献之一薛定谔方程——将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。
当然,他最为世人所知的还是“薛定谔的猫”的思想实验——将一只猫关在装有少量镭和氰化物的密闭容器里。镭的衰变存在几率,如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。根据量子力学理论,由于放射性的镭处于衰变和没有衰变两种状态的叠加,猫就理应处于死猫和活猫的叠加状态。这只既死又活的猫就是所谓的“薛定谔猫”。
热力学创始人
普朗克(Max Planck)定律解释了黑体辐射能按波长分布的规律。
1、光谱辐射力
单位时间内单位表面积向其上的半球空间所有方向辐射出去的包含波长λ在内的单位波长内的能量称为光谱辐射力(spectral emissive power),记为,单位为或者。分母中的m表示了单位波长的宽度,由于m这个单位对于热辐射的波长宽度而言太大,因而常用μm来代替。
2、普朗克定律
黑体的光谱辐射力随波长的变化由以下的普朗克定律所描述:
式中:
—— 黑体光谱辐射力,W/m3;
—— 波长,m;
T —— 黑体热力学温度,K;
e —— 自然对数的底;
—— 第一辐射常量,;
—— 第二辐射常量,。
以上就是小编为您收集和整理的热工学创业(热学创始人)相关内容,如果对您有帮助,请帮忙分享这篇文章^_^
本文来源: https://www.baikezj.com/a/643622735b834ad89d0c0d45.html